Naveen Pandey has more than 2 years of experience in data science and machine learning. He is an experienced Machine Learning Engineer with a strong background in data analysis, natural language processing, and machine learning. Holding a Bachelor of Science in Information Technology from Sikkim Manipal University, he excels in leveraging cutting-edge technologies such as Large Language Models (LLMs), TensorFlow, PyTorch, and Hugging Face to develop innovative solutions.
Computer Vision is a technology that enables machines to see, and it is one of the most important technologies in Artificial Intelligence. It is also one of the most difficult technologies to understand. for example, persons. How does machine vision work? The image data can be processed and an object in the image can be…
In a classification task, there is a high chance for the algorithm to be biased if the dataset is imbalanced. An imbalanced dataset is one in which the number of samples in one class is very higher or lesser than the number of samples in the other class. An example of an imbalanced dataset is…
A Gaussian mixture is a statistical model that assumes all the data points are generated from a linear combination of multivariate Gaussian distributions. This assumption has unknown parameters that can be estimated from the data, which we refer to as hyperparameters. Firstly, K-means employs the Gaussian distributions and centers of latent Gaussians. However, unlike K-means,…
Clustering involves grouping data points by similarity. In unsupervised machine learning, for example, data points are grouped into clusters depending on the information available in the dataset. The data items in the same clusters are similar to each other, while the items in different clusters are dissimilar. K Means and DBSCAN represent 2 of the…
Introduction to LSTM (Long Short-Term Memory)Imagine you’re at a murder mystery dinner. At the very beginning, the Lord of the Manor suddenly collapses, and your task is to figure out, who done it? It could be the maid or the butler. However, there’s a problem: your short-term memory is not working. You can’t recall any…
ANN is a form of machine learning. It models the human brain and is a type of artificial neural network. ANNs are used to solve problems in the fields of computer vision, speech recognition, natural language processing, and other domains. .Artificial Intelligence is an umbrella term for a broad range of technologies that mimic the…
Recommender Systems are a type of AI that is used to predict what a user might like based on their interests, preferences, and historical data. The recommendation engine is personalized for the user, making suggestions that are not just based on similar tastes but also connections and social context. Recommendations include posts, products, or anything…
Linear Regression, a machine learning algorithm, is widely used and evaluating its performance is essential. Two important metrics that are used to evaluate Linear Regression are R-squared and Adjusted R-squared. These metrics help determine the degree of the model fit and how much of the variance in the target variable is explained by the independent…
When it comes to the domain of machine learning algorithms, two prevalent models are the decision trees and the random forests. While both are employed for classification and regression, they diverge in their data analysis and model building methodologies. Decision Trees A decision tree is a model that segments the presented data into minor subsets…
Artificial intelligence (AI) is a term that encompasses computer systems designed to imitate human intelligence. It is an exciting field that has attracted considerable attention in many industries, including finance, hospitality, education and entertainment. Artificial intelligence is planned to simulate human behavior and thought processes, making it one of the most important trends of this…
We are going to talk about a Natural Language Processing concept called the Bag of words model. When you’re applying an algorithm in NLP, it works with numbers and not words or sentences. We can’t feed our text directly into algorithms like that in order to analyze text data, it needs to be converted into…
CatBoost is a powerful machine learning library that was developed by researchers at the University of Montreal, McGill University, and Google Brain. It was designed to speed up the training of deep neural networks and improve the accuracy of predictions in machine learning models. Using CatBoost for Text Classification One of the key benefits of…